框架结构建筑物拆除爆破模拟技术研究
摘 要:本文提出了采用有限单元法和多刚体动力学数值仿真方法相结合的仿真技术对框架结构建筑物拆除爆破进行模拟的方法。该技术可对结构的失稳、解体、倒塌运动过程、堆积范围等问题进行预测或再现,有助于提高拆除爆破设计方案的安全性和可靠性。 关键词:框架结构建筑物 拆除爆破 数值模拟 有限单元法 多刚体动力学
1、引言 随着我国城市化进程的加快,采用爆破方法快速拆除建(构)筑物日益受到重视并被广泛采用。然而在当前的爆破设计中,仍主要依靠工程师的工程经验来预测结构的倒塌过程,倒塌范围也仅能采用经验公式进行估算。在遇到结构复杂的建筑物或爆破方案较为复杂的情况时,工程经验及经验公式便难以满足需要。随着计算机技术的发展,采用数值仿真的方式对建筑物拆除爆破进行模拟已经可以实现。 2、有限元法与多刚体动力学仿真技术建筑物拆除爆破是通过破坏建筑物的关键承重部位使其失去承载能力,使建筑物在自重作用下失稳倒塌,这个过程可视为结构由静力平衡系统转化为多刚体动力系统的过程,使采用多刚体动力学数值仿真方法和平面杆系结构有限元法对建筑物爆破拆除过程的模拟成为可能,其仿真流程如图1所示。 平面杆系结构有限元法是建筑结构设计中应用最为广泛的一种方法。建筑物拆除爆破涉及的对象是建筑结构,因此在建筑物拆除爆破设计中,可以运用平面杆系结构有限元法,对拆除过程中不同阶段的结构内力(轴力、剪力和弯矩)进行分析,以便为拆除爆破设计提供准确的依据,提高拆除爆破设计的可靠性和准确性。 3、建筑物拆除爆破机理模拟3.1 建筑物失稳及解体的模拟 在建筑物拆除爆破中,结构失稳的主要原因是关键承重部位的破坏,相应的在模拟过程中将该被破坏部位从整个结构中予以删除即可实现结构整体失稳条件的模拟。 3.2 建筑物倒塌运动过程模拟 在承重部位起爆后,建筑物失稳,结构逐渐发生解体破坏,形成一个由钢筋相连的混凝土块体系统,进而,结构将发生倒塌、触地解体、形成爆堆,此时,结构可抽象为由许多刚体联结而成的多刚体运动系统。这个过程很难用连续介质力学来模拟,而可采用多刚体运动学数值模拟技术进行描述,因此结构倒塌行为可采用多刚体运动学仿真系统来模拟。 4、算例4.1 工程概况 爆破拆除某7层框架结构楼房。框架结构为现浇框架,预制楼板,混凝土等级为C20,柱截面为400mm×600mm,纵向主梁截面为300mm×700mm,柱网布置见图3,楼房的立面图如图4所示。 4.2 爆破方案 由于周围环境及建筑物本身形状的限制,对该建筑物采用水平逐跨解体的爆破方案,结构的倒塌方向如图4所示。为了使结构失稳,需要自右向左依次爆破A~E排立柱。爆破设计时,爆破高度分别取一层、两层,排间起爆时差分别取0.1s、0.3s、0.5s、0.7s、1.0s进行计算,以分析不同条件下结构的失稳、破坏、倒塌及堆积情况。 4.3 失稳及解体模拟 选择图4所示最右侧的一跨框架的一榀作为研究对象,研究其失稳破坏的条件。采用平面杆系有限元法计算发现,爆破高度为一层和两层时,结构中构件的可能破坏(弯矩超过其极限抵抗弯矩)情况基本相同,而随后依次爆破的各跨框架的破坏形式也与第一跨基本相同。 4.4 倒塌过程模拟 以结构的失稳和初始破坏情况为模拟初始条件,对该框架结构的各拆除方案进行计算。计算结果显示:当爆破高度为一层时其触地速度约为6.5m/s,难以满足完全解体要求,此时可采用人工施爆以解除结构刚度,但势必增加工程量,并给爆破飞石的控制带来困难;而爆破高度取两层时其触地速度约为14m/s,可满足要求;排间的起爆时差为0.5s左右时,倒塌过程较为理想。下图为爆高为两层、排间起爆时差为0.5s时,结构倒塌过程的模拟。
t=0s t=0.5s t=1.0s t=1.5s
t=2.0s t=2.5s t=3.0s t=3.6s 图 6 结构倒塌过程模拟图 模拟结果显示,整个结构从起爆到完全落地堆积大约需3.6s,爆堆高度约为5m,可达到原地坍塌的要求,倒塌及堆积过程也基本与实际现象一致。在模拟过程中发现,在实施水平逐段解体方案时,立柱爆破高度和排间起爆时差的选择是关系爆破是否成功的关键问题,必须从多个方面予以考虑。 |