根据对实现SBNR系统的分析表明,三个主要机理是造成发生SBNR的原因: ① 混合形态 由于生物反应池混合形态不均,例如充氧装置的不同,可在生物反应池内形成缺氧及/或厌氧段。此种情况称为生物反应池的大环境,即宏观环境。 ② 菌胶团 缺氧及/或厌氧段可在活性菌胶团内部形成,即微环境。 ③ 新的专用微生物菌种 目前先进的微生物学已在一定范围内展示先前并没有被认识的微生物菌种,其可以在曝气生物反应池中用来去除氮、磷。 在生产规模的生物反应池中,整个反应池处于完全均匀混合状态的情况并不存在。就氧化沟及一些通过采用充氧装置来完成大量混合液循环的处理厂而言[1、5],高度的充氧发生在反应池一端,受限制的充氧发生在反应池的其余部分,混合液在曝气及非曝气段循环。这种生物反应池流态也是BNR系统的特点,定义为好氧、缺氧、及厌氧段。 此外,发生在菌胶团内部的溶解氧浓度梯度目前也已被公众认同,从而使实现BNR所必须的缺氧及/或厌氧段可在菌胶团内部形成。因此,SBNR也可在这种非正式的、没有形成明显区别的缺氧及/或厌氧段内被观察到[6~8]。事实上,根据这个机理,目前已对有关达到脱氮的SBNR工艺的运行效果建立了数学模型,并进行了分析。 在过去几年中,许多新的氮生物化学菌族被鉴别出来,其中至少部分菌种以组团形式对SBNR起作用,包括起反硝化作用的自养硝化菌(统称AMANMOX工艺)及起硝化作用的异养菌(即曝气反硝化)[9]。目前对生物化学及生物除磷工艺的微生物学理解还不够完善,对其认识还在发展之中[10]。 以上所阐述的关于研究SBNR最基本假设的三个机理可以同时应用于任何系统中实现SBNR,但符合逻辑的每种机理的相对作用可能变化,这取决于系统的设计及运行参数。理解及控制SBNR的关键是要了解工艺设计及运行参数将如何影响SBNR,这也是整个SBNR研究的基本目标。 本文对那些具有生产规模的、已知或被认为具备发生SBNR的活性处理厂进行定性分析,以确定SBNR在其中的状况,重点放在采用Orbal构形的污水处理厂。Orbal工艺生物反应池是由3个闭路环形沟道以串联方式组成。其中每个沟道充氧程度不同,因而在各沟道创造了不同的环境[6]。这种变化的空间环境贯穿于整个生物反应池,以使先前描述的第一个混合形态机理得以成立及应用。同时由于3个沟道均处于曝气状态,故液相中溶解氧浓度受到控制,从而造成一种在生物菌胶团内部形成缺氧及/或厌氧微环境的趋势(即第二个机理),这就使得Orbal构形成为理想的研究SBNR的对象。同时若将重点集中于具体处理厂的有关构形,则可允许对与SBNR有关的其它设计及运行参数的影响因素进一步定性分析。 ① 定性分析发生在所选生产规模的处理厂中同时脱氮、除磷的程度; ② 定性分析工艺运行参数将如何影响其特性(脱氮、除磷或两者兼有)及对SBNR的限制程度; ③ 记录观察到的任何可能有助于对所选具体处理厂进一步深入研究的现象。
本文对6个采用分段、闭环沟道生产规模的活性处理厂去除营养运行效果进行了全面的分析与研究。根据初步的评价结果,得出以下结论: ① 在所有选定的污水厂中均观察到较低的氨氮、TN及硝酸盐氮出水浓度。其中2个厂总氮去除率为85%~90%,3个厂出水总氮在3~5mg/L范围内,这些数据表明这种闭路、环形沟道的工艺构形具有极好的脱氮条件。泥龄较长使硝化反应很易发生,且外沟道处于低DO浓度。这些采用内循环方式即把混合液从内沟道打入外沟道的污水厂,通常能达到更低的出水硝酸盐氮浓度。 ② Orbal工艺各沟道溶解氧分布数据表明,很明显的缺氧及好氧段并没有在各沟道内形成。由于曝气转碟较好的混合能力,使外沟道溶解氧呈均匀一致的低浓度。 ③ 沿各沟道数据分布表明,系统中均匀一致的低氮浓度是其达到高效脱氮的证明,该结果通常与那种缺少明显的缺氧及好氧段工艺结果相一致。 ④ 氮的去除可以用IAWQ ASMⅠ进行分析。ASM Ⅰ是根据传统的对微生物的认识而建立的,它表明该系统高效脱氮的结果并不是由新的微生物来完成的,但这并不意味着新的微生物并不存在于系统中。 ⑤ 应用ASMⅠ工艺模型表明独立的明显的缺氧与好氧段并没有在此系统中发展及形成。因而,也进一步说明发生在菌胶团内部的反硝化反应在其整个系统脱氮的机理中扮演相当重要的角色。 ⑥ 根据对现有污水厂含磷数据的分析表明,这些厂或具有较低的总磷出水浓度,或其磷的去除超过用于合成生物细胞所需的磷。由于并没有向系统添加化学,故解释这些多余磷的去除可能是通过生物除磷来完成的。 ⑦ 现有数据表明,明显的厌氧段并没有在系统中存在。因此,推测磷的释放可能发生在菌胶团内部的厌氧段。外沟道液相中低DO浓度将更易使其在菌胶团内部形成厌氧环境。 ⑧ SBNR可能在Orbal工艺中发生,因而使该工艺系统成为进一步研究SBNR现象的很好的对象。
参考文献
1 Grody C P L, Daigger Jr G T, Lim H C. Biological Wastewater Treatment. 2nd ed. New York: Marcel Dekker 2 Van Munch E P, Land P, Keller J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Science and Technology, 1996;20(2):277~284 3 Cinar O, Daigger G T, Graef S P.Evaluation of IAWQ activated sludge model No.2 using steady-state data from four full-scale wastewater treatment plants. Water Environment Research, 1998;70:1216~1224 4 Brewer H, Stephenson J P, Green D. Plant optimization using online phosphorus analyzers and automated SRT control to achieve harbour delisting. In: Procengs of the Water Environment Federation 68th Annual Conference & Exposition 1995 5 Randall C W, Barnard J L, Stensel H D. Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal. Lancaster, PA:Technomics Publishing,1992 6 Smith G. Increasing oxygen delivery in anoxic tanks to improve denitrification. In: Procengs of the Water Environment Federation 69th Annual Conference & Exposition .1996 7 Albertson O E, Coughenour J. Aerated anoxic oxidation-denitrification process. Journal of Environmental Engineering,1995;121:720~726 8 Albertson O E, Stensel H D. Aerated anoxic biological NdeN process. Water Science andTechnology, 1994; 29(7):167~176 9 Van Loosdrecht M C M,Jetten M S M. Microbiological conversions in nitrogen removal. In: IAWQ 19th Biennial International Conference Preprint Book 1.1998 1~8 10 Mino T, Van Loosdrecht M C M, Heijnen J J. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Research, 1998; 32:3193~3207 11 Daigger G T, Crawford G V, Shaughnessey M O et al. The use of coupled refined stoichiometric and kinetic/stoichiometric models to characterize entire wastewater treatment plants. In: Procengs of the Water Environment Federation 71st Annual Conference & Exposition 1998 .617~628