堤基土体抗滑稳定工程地质评价
1、前言
堤基抗滑稳定是涉及堤防工程安全的主要工程地质问题之一。堤基常遇具不利结构的不良土体,不良土体堤基抗滑稳定评价更多地依靠工程地质分析。但传统分析方法重土层单元,轻土体结构;重单因素分析,轻多因素综合;重静态评判,轻动态预测,不能满足对复杂问题的分析评价。本文采用把堤基土体当作一个系统进行分析的思路,在查明堤基土体结构的基础上,合理选取土的抗剪强度参数,综合考虑环境因素,对梧州河西防洪堤某段堤基抗滑稳定问题进行系统分析,使堤基抗滑稳定评价更为全面、合理。 2、堤基土体系统及其抗滑稳定工程地质评价基本思路 2.1 堤基土体系统概述 “土体”是指多种土层构成的组合体,其性质不等于其中某一土层的性质,也不等于各土层性质的简单迭加,而是相互作用、相互影响的有机整体[1]。这是一种把土体当作一个系统看待的新认识。这里,土体的结构是各种土层的特定组合关系,是以土层为单元的宏观结构,区别于以土粒为单元的土的微观结构和以纹层为单元的中观结构。 表1 堤基结构分类表
“不良土体”是指具不利结构的土体。对堤基抗滑稳定不利的结构主要是土体中具有不利产状的软弱夹层、弱抗冲层及硬卧(阻水)层。显然,不良土质及不良土体是研究堤基抗滑稳定问题的主要对象。且后者不易查明,更具危险性。 2.2 堤基土体抗滑稳定工程地质评价基本思路[1] 把堤基土体当作一个开放系统加以考察,应首先从查明堤基地质结构模型入手,再深入分析土的物理力学性质,综合考虑环境因素,最后对堤基抗滑稳定问题作出全面的工程地质评价。 2.2.1 堤基地质模型的建立 堤基地质模型即堤基地质结构类型或堤基土体结构类型,是堤基抗滑稳定分析的基础。不同结构堤基抗滑稳定性不同,控制因素不同,适用的计算方法及相应的计算参数均可能有所不同。对不良土体堤基,土体不利结构直接控制堤基的抗滑稳定性。因此,查明土体的不利结构是堤基抗滑稳定分析的前提,应作为堤基勘察的重点。 2.2.2 土的抗剪强度参数选取 地质模型建立之后,土的抗剪强度参数成为定量评价堤基抗滑稳定的关键。 2.2.3 不利环境影响 堤基土体为一开放系统,外受动荡不定的河道和复杂多变的水流影响,内为人类生产或生活场所,各种人为干扰影响很大。因此,堤基稳定问题不仅要解决假定边界条件下的静态稳定问题,还必须重视不利环境影响下的动态稳定问题。虽然动态稳定定量预测尚难于实现,但加强定性分析既是必要的,也是可行的。 3、梧州河西堤某段堤基抗滑稳定工程地质评价 3.1 工程地质条件 3.1.1 地形地貌 该堤段全长1510m,设计为土堤,设计堤顶高程28.5m,堤高一般5m上下。堤基全部座落于浔江一级阶地之上,地面高程23.5m。堤身填土主要由粘土及粉质粘土组成,夹少量粉砂岩风化碎块,经机械压实。堤前岸坡已发现因河水冲淘而产生的坍岸现象。 3.1.2堤基土层结构 该堤段堤基土共计6层,自上而下土层结构依次为: 3.1.3 水文地质条件 河西堤某段位于浔江一级阶地前缘岸坡及河漫滩上,地下水主要为孔隙水,次为裂隙水及少量上层滞水。孔隙水主要赋存于第四系松散及堆积层中;裂隙水埋藏于下伏基岩花岗岩裂隙中;上层滞水零星分布于人工填土和第四系粘性土中,均受大气降水补给,且向河流排泄。 3.1.4 不良地质现象 前期勘察资料表明,本段河岸曾发生5处滑坡。滑坡体产生于岸坡中部,垂直滑向河床,滑坡后缘线均呈弧形,滑坡体厚度一般均小于6m,属浅层滑坡,详见表2。 表2 梧州市河西堤某段岸坡滑坡统计表
上述浅层滑坡实质是天然河岸的局部岸坡失稳,构成滑坡体的地层均以第四系冲积②粉质粘土为主,中上部有多处地下水冒出。 3.2 天然岸坡稳定问题分析 由于土堤的②层粉质粘土为天然地基,岸坡的稳定可能直接影响土堤的稳定,尤其是岸坡的深层抗滑稳定问题,对土堤的整体稳定起控制作用。 3.2.1 岸坡不良土体结构 本次勘察揭露,本段堤防堤前岸坡主要由三大层构成,即:②新近沉积的粉质粘土,③早期沉积的粘土及④灰色粉质粘土,其中②、③层(前期勘察合并为第③层)构成岸坡中上部主体,第④层深埋于15~20m以下。需强调的是,本次勘察发现,第②层与第③层土的性状差异明显,不能合并,主要体现在稠度状态及渗透性上,尤其是后者。第②层粉质粘土渗透系数平均值k=1.34*10-4cm/s,而其下伏第③层渗透系数平均值k=1.74*10-6cm/s,二者相差达100倍,即第③层成为第②层的阻水层,以至地下水极易汇集于②、③层之间,由此形成②、③层之间的饱水接触地带。岸坡水文地质调查证实,岸坡中上部常见地下水呈下降泉流出或形成大片湿地。此外,横剖面勘察成果反映第③层顶面起伏较明显。因此,综合上述土体结构分析,尤其是存在第③层阻水土层及②、③层之间局部易形成软弱饱水接触带,本堤段的浅层滑坡主要受控制于②、③层接触带。如果恢复为未修护坡之前的原始地形,岸坡呈上(②层)陡(坎高5m~7m)下(③层)缓(约20°),岸坡中上部沿②、③层接触带稳定性差(K=0.96~0.8),与浅层滑坡发育情况吻合,若再遇第③层顶面起伏影响而出现向河一侧倾斜产出,沿②、③层接触带的浅层滑坡更易发生。 图3-1堤基土体结构示意图
3.2.2 土的抗剪强度参数选取 由于③层硬卧层顶板的阻水、滞水作用,与上覆土体②层底部一起,长期饱水软化,形成一定厚度的软弱饱水接触带。分别对②层、③层抗剪强度参数统计后取小值平均值,可能就是“接触带”的强度指标。据此计算,在硬卧层下再出现软层时(见图3-1),软件自动搜索的计算结果,滑弧将穿越硬层,深入软层,这与现场滑坡调查结果均为浅层滑坡不符。因此,硬卧层的抗剪强度指标应剔除顶板附近低值以后的再统计。这种情况下,“接触带”才是危险滑面,应有针对它的取样试验,否则可考虑以②层或③层抗剪强度参数最小值为代表。 表3 堤基抗滑稳定计算成果表
3.2.3 堤外水流条件变化 由于本堤段上游段地处冲刷河段,新建堤防缩窄行洪断面,岸坡的抗冲稳定直接影响岸坡乃至堤基抗滑稳定性。若不考虑岸坡坡脚采取护岸措施,计算水位降落期岸坡整体稳定安全系数为K=1.09,说明在水位降落期的稳定性已进入临界状态, 因此,岸坡坡脚采取护岸措施是必要和合理的。 3.2.4 堤基抗滑稳定工程地质评价 对本堤段堤基及岸坡现状稳定性进行计算分析,计算简图3-1,计算成果见表3。分析表3可知,经修坡、护岸后,无论是天然状态,还是土堤加载的情况下,堤基岸坡中上部土体稳定性较好,K≥1.71;即使遇接触带向河倾(5°)时,沿接触带抗滑安全系数K=1.67,仍处于稳定状态。在未考虑抛石护坡及抗滑齿槽作用时,堤基岸坡整体稳定性良好(最不利滑弧切入④层,K=1.56),土堤加载情况下,施工期稳定性仍较好(K=1.495)。经竣工后现场复查,除岸坡中上部(地下水出渗处)因局部潮湿而变形稍大外,堤基岸坡整体稳定性良好。 4、结论 1)对不良土体堤基,土体不利结构直接控制堤基的抗滑稳定性。不良土体堤基抗滑稳定问题评价,从查明堤基地质结构入手,深入分析土的物理力学性质,综合考虑环境因素,可以得出更为合理的评价。 |